ribozyme

GlcN6P cofactor serves multiple catalytic roles in the glmS ribozyme

222. J. L. Bingaman, S. Zhang, D. R. Stevens, N. H. Yennawar,  S. Hammes-Schiffer, and P. C. Bevilacqua, “GlcN6P cofactor serves multiple catalytic roles in the glmS ribozyme,” Nat. Chem. Biol. 13, 439-445 (2017).

Assessing the potential effects of active site Mg2+ ions in the glmS ribozyme-cofactor complex

194. S. Zhang, D. R. Stevens, P. Goyal, J. L. Bingaman, P. C. Bevilacqua, and S. Hammes-Schiffer, “Assessing the potential effects of active site Mg2+ ions in the glmS ribozyme-cofactor complex,” J. Phys. Chem. Lett. 7, 3984-3988 (2016).

Molecular Dynamics Study of Twister Ribozyme: Role of Mg2+ Ions and the Hydrogen-Bonding Network in the Active Site

210. M. N. Ucisik, P. C. Bevilacqua, and S. Hammes-Schiffer, “Molecular dynamics study of twister ribozyme: Role of Mg2+ ions and the hydrogen-bonding network in the active site,” Biochemistry. 55, 3834-3846 (2016).

Inverse thio effects in the hepatitis delta ribozyme reveal that the reaction pathway is controlled by metal ion charge density

191. P. Thaplyal, A. Ganguly, S. Hammes-Schiffer, and P. C. Bevilacqua, “Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density,” Biochemistry 54, 2160-2175 (2015).

Role of the active site guanine in the glmS ribozyme self-cleavage mechanism: Quantum mechanical/molecular mechanical free energy simulations

188. S. Zhang, A. Ganguly, P. Goyal, J. Bingamin, P. C. Bevilacqua, and S. Hammes-Schiffer, “Role of the active site guanine in the glmS ribozyme self-cleavage mechanism: Quantum mechanical/molecular mechanical free energy simulations,”J. Am. Chem. Soc. 137, 784-798 (2015).