proton relays

Managing the redox potential of PCET in Grotthuss-type proton wires

334. E. Odella, M. Secor, E. A. R. Cruz, W. D. Guerra, M. N. Urrutia, P. A. Liddell, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “Managing the redox potential of PCET in Grotthuss-type proton wires,” J. Am. Chem. Soc. 144, 16524-16534 (2022). DOI: 10.1021/jacs.2c05820

The role of intact hydrogen-bond networks in multiproton-coupled electron transfer

294. W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “The role of intact hydrogen-bond networks in multiproton-coupled electron transfer,” J. Am. Chem. Soc. 142, 21842-21851 (2020).

Proton-coupled electron transfer drives long-range proton translocation in bioinspired systems

261.E. Odella, B. L. Wadsworth, S. J. Mora, J. J. Goings, M. T. Huynh, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “Proton-coupled electron transfer drives long-range proton translocation in bioinspired systems,” J. Am. Chem. Soc. 141, 14057-14061 (2019).

Propensity for proton relay and electrostatic impact of protein reorganization in Slr1694 BLUF photoreceptor

242. J. J. Goings, C. R. Reinhardt, and S. Hammes-Schiffer, “Propensity for proton relay and electrostatic impact of protein reorganization in Slr1694 BLUF photoreceptor,” J. Am. Chem. Soc. 14015241-15251 (2018).

Theoretical analysis of cobalt hangman prophyrins: Ligand dearomatization and mechanistic implications for hydrogen evolution

186. B. H. Solis, A. G. Maher, T. Honda, D. C. Powers, D. G. Nocera, and S. Hammes-Schiffer, “Theoretical analysis of cobalt hangman prophyrins: Ligand dearomatization and mechanistic implications for hydrogen evolution,” ACS Catal. 4, 4516–4526 (2014).

Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

183. D. K. Bediako, B. H. Solis, D. K. Dogutan, M. M. Roubelakis, A. G. Maher, C. H. Lee, M. B. Chambers, S. Hammes-Schiffer, and D. G. Nocera, “Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins,” Proc. Natl. Acad. Sci. USA 111, 15001-15006 (2014).

Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights

181. M. T. Huynh, W. Wang, T. B. Rauchfuss, and S. Hammes-Schiffer, “Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights,” Inorg. Chem. 53, 10301-10311 (2014).

pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts

164. S. Horvath, L. E. Fernandez, A. M. Appel, and S. Hammes-Schiffer, “pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts,”Inorg. Chem. 52, 3643-3652 (2013).

Theoretical design of molecular electrocatalysts with flexible pendant amines for hydrogen production and oxidation

163. L. E. Fernandez, S. Horvath, and S. Hammes-Schiffer, “Theoretical design of molecular electrocatalysts with flexible pendant amines for hydrogen production and oxidation,” J. Phys. Chem. Lett. 4, 542-546 (2013).

Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

153. S. Horvath, L. E. Fernandez, A. V. Soudackov, and S. Hammes-Schiffer, “Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production,” Proc. Natl. Acad. Sci. USA109, 15663-15668 (2012).