proton relays

Theoretical analysis of cobalt hangman prophyrins: Ligand dearomatization and mechanistic implications for hydrogen evolution

186. B. H. Solis, A. G. Maher, T. Honda, D. C. Powers, D. G. Nocera, and S. Hammes-Schiffer, “Theoretical analysis of cobalt hangman prophyrins: Ligand dearomatization and mechanistic implications for hydrogen evolution,” ACS Catal. 4, 4516–4526 (2014).

Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

183. D. K. Bediako, B. H. Solis, D. K. Dogutan, M. M. Roubelakis, A. G. Maher, C. H. Lee, M. B. Chambers, S. Hammes-Schiffer, and D. G. Nocera, “Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins,” Proc. Natl. Acad. Sci. USA 111, 15001-15006 (2014).

Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights

181. M. T. Huynh, W. Wang, T. B. Rauchfuss, and S. Hammes-Schiffer, “Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights,” Inorg. Chem. 53, 10301-10311 (2014).

pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts

164. S. Horvath, L. E. Fernandez, A. M. Appel, and S. Hammes-Schiffer, “pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts,”Inorg. Chem. 52, 3643-3652 (2013).

Theoretical design of molecular electrocatalysts with flexible pendant amines for hydrogen production and oxidation

163. L. E. Fernandez, S. Horvath, and S. Hammes-Schiffer, “Theoretical design of molecular electrocatalysts with flexible pendant amines for hydrogen production and oxidation,” J. Phys. Chem. Lett. 4, 542-546 (2013).

Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

153. S. Horvath, L. E. Fernandez, A. V. Soudackov, and S. Hammes-Schiffer, “Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production,” Proc. Natl. Acad. Sci. USA109, 15663-15668 (2012).

Theoretical analysis of the sequential proton-coupled electron transfer mechanisms for H2 oxidation and production pathways catalyzed by nickel molecular electrocatalysts

151. L. E. Fernandez, S. Horvath, and S. Hammes-Schiffer, “Theoretical analysis of the sequential proton-coupled electron transfer mechanisms for H2 oxidation and production pathways catalyzed by nickel molecular electrocatalysts,” J. Phys. Chem. C 116, 3171-3180 (2012).

Theoretical analysis of proton relays in electrochemical proton-coupled electron transfer

139. B. Auer, L. E. Fernandez, and S. Hammes-Schiffer, “Theoretical analysis of proton relays in electrochemical proton-coupled electron transfer,” J. Am. Chem. Soc. 133, 8282-8292 (2011).

Current theoretical challenges in proton-coupled electron transfer: Electron-proton nonadiabaticity, proton relays, and ultrafast dynamics

138. S. Hammes-Schiffer, “Current theoretical challenges in proton-coupled electron transfer: Electron-proton nonadiabaticity, proton relays, and ultrafast dynamics,” J. Phys. Chem. Lett. 2, 1410-1416 (2011).