Main Header Menu

Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

200. A. V. Soudackov and S. Hammes-Schiffer, “Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion,” J. Chem. Phys. 143, 194101 (2015).

Dependence of vibronic coupling on molecular geometry and environment: Bridging hydrogen atom transfer and electron-proton transfer

197. A. K. Harshan, T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, “Dependence of vibronic coupling on molecular geometry and environment: Bridging hydrogen atom transfer and electron-proton transfer,” J. Am. Chem. Soc. 137, 13545-13555 (2015).

Role of solvent dynamics in photoinduced proton-coupled electron transfer in a phenol-amine complex in solution

195. P. Goyal and S. Hammes-Schiffer, “Role of solvent dynamics in photoinduced proton-coupled electron transfer in a phenol-amine complex in solution,” J. Phys. Chem. Lett. 6, 3515-3520 (2015).

Proton-coupled electron transfer: Moving together and charging forward

194. S. Hammes-Schiffer, “Proton-coupled electron transfer: Moving together and charging forward,” J. Am. Chem. Soc. 137, 8860-8871 (2015).

Nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex

189. P. Goyal, C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex,” J. Phys. Chem. B 119, 2758-2768 (2015).

Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

183. D. K. Bediako, B. H. Solis, D. K. Dogutan, M. M. Roubelakis, A. G. Maher, C. H. Lee, M. B. Chambers, S. Hammes-Schiffer, and D. G. Nocera, “Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins,” Proc. Natl. Acad. Sci. USA 111, 15001-15006 (2014).

Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase

182. A. V. Soudackov and S. Hammes-Schiffer, “Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase,” J. Phys. Chem. Lett. 5, 3274-3278 (2014).

Proton-coupled electron transfer in molecular electrocatalysis: Theoretical methods and design principles

177. B. H. Solis and S. Hammes-Schiffer, “Proton-coupled electron transfer in molecular electrocatalysis: Theoretical methods and design principles,” Inorg. Chem. 53, 6427-6443 (2014).

pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts

164. S. Horvath, L. E. Fernandez, A. M. Appel, and S. Hammes-Schiffer, “pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts,”Inorg. Chem. 52, 3643-3652 (2013).

Photoinduced proton-coupled electron transfer of hydrogen-bonded p-nitrophenyl-phenol-methylamine complex in solution

160. C. Ko, B. H. Solis, A. V. Soudackov, and S. Hammes-Schiffer, “Photoinduced proton-coupled electron transfer of hydrogen-bonded p-nitrophenyl-phenol-methylamine complex in solution,” J. Phys. Chem. B117, 316-325 (2013).