proton-coupled electron transfer

Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models

226. S. Hu, A. V. Soudackov, S. Hammes-Schiffer, and J. P. Klinman, “Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models,” ACS Catal. 7, 3569-3574 (2017).

Tuning the ultrafast dynamics of photoinduced proton-coupled electron transfer in energy conversion processes

218. P. Goyal and S. Hammes-Schiffer, “Tuning the ultrafast dynamics of photoinduced proton-coupled electron transfer in energy conversion processes,” ACS Energy Lett. 2, 512-519 (2017).

Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase

216. A. V. Soudackov and S. Hammes-Schiffer, “Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase,” Farady Discuss. 195, 171-189 (2016).

Quinone 1 e- and 2 e-/2 H+ reduction potentials: Identification and analysis of deviations from systematic scaling relationships

215. M. T. Huynh, C. W. Anson, A. C. Cavell, S. S. Stahl, and S. Hammes-Schiffer, “Quinone 1 e and 2 e/2 H+ reduction potentials: Identification and analysis of deviations from systematic scaling relationships,” J. Am. Chem. Soc. 138, 15903-15910 (2016).

Computational insights into five- versus six-coordinate iron center in ferrous soybean lipoxygenase

214. T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, “Computational insights into five- versus six-coordinate iron center in ferrous soybean lipoxygenase,” J. Phys. Chem. Lett. 7, 3429-3433 (2016).

Electrochemical Electron Transfer and Proton-Coupled Electron Transfer: Effects of Double Layer and Ionic Environment on Solvent Reorganization Energies

208. S. Ghosh, A. V. Soudackov, and S. Hammes-Schiffer, “Electrochemical electron transfer and proton-coupled electron transfer: Effects of double layer and ionic environment on solvent reorganization energies,” J. Chem. Theory Comput. 12, 2917-2925 (2016).

Co(salophen)-catalyzed aerobic oxidation of para-hydroquinone: Mechanism and implications for aerobic oxidation catalysis

196. C. W. Anson, S. Ghosh, S. Hammes-Schiffer, and S. Stahl, “Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone: Mechanism and implications for aerobic oxidation catalysis,” J. Am. Chem. Soc. 138, 4186–4193 (2016).

Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex

205. P. Goyal, C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex,” J. Phys. Chem. B 120, 2407-2417 (2016).

Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen

203. S. Raugei, M. L. Helm, S. Hammes-Schiffer, A. M. Appel, M. O’Hagan, E. S. Wiedner, and R. M. Bullock “Experimental and computational mechanistic studies guiding the rational design of molecular electrocatalysts for production and oxidation of hydrogen,” Inorg. Chem. 55, 445-460 (2016).

Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism

202. B. H. Solis, A. G. Maher, D. K. Dogutan, D. G. Nocera, and S. Hammes-Schiffer, “Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism,” Proc. Nat. Acad. Sci. USA 113, 485-492 (2016).