proton-coupled electron transfer

Impact of mutations on the binding pocket of soybean lipoxygenase: Implications for proton-coupled electron transfer

244. P. Li, A. V. Soudackov, and S. Hammes-Schiffer, “Impact of mutations on the binding pocket of soybean lipoxygenase: Implications for proton-coupled electron transfer,” J. Phys. Chem. Lett. 96444-6449 (2018).

Controlling proton-coupled electron transfer in bio-inspired artificial photosynthetic relays

243. E. Odella, S. J. Mora, B. L. Wadsworth, M. T. Huynh, J. J. Goings, P. A. Liddell, T. L. Groy, M. Gervaldo, L. E. Sereno, D. Gust, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, and A. L. Moore, “Controlling proton-coupled electron transfer in bio-inspired artificial photosynthetic relays,” J. Am. Chem. Soc. (in press). 

Fundamental insights into proton-coupled electron transfer in soybean lipoxygenase from quantum mechanical/molecular mechanical free energy simulations

235. P. Li, A. V. Soudackov, and S. Hammes-Schiffer, “Fundamental insights into proton-coupled electron transfer in soybean lipoxygenase from quantum mechanical/molecular mechanical free energy simulations,” J. Am. Chem. Soc. 140, 3068-3076 (2018).

Role of proton diffusion in the kinetics of proton-coupled electron transfer from photoreduced ZnO nanocrystals

234. S. Ghosh, A. V. Soudackov, and S. Hammes-Schiffer, “Role of proton diffusion in the kinetics of proton-coupled electron transfer from photoreduced ZnO nanocrystals,” ACS Nano. 11, 10295-10302 (2017).

Theoretical insights into proton-coupled electron transfer from a photoreduced ZnO nanocrystal to an organic radical

233. S. Ghosh, J. Castillo-Lora, A. V. Soudackov, J. M. Mayer, and S. Hammes-Schiffer, “Theoretical insights into proton-coupled electron transfer from a photoreduced ZnO nanocrystal to an organic radical,” Nano. Lett. 17, 5762-5767 (2017).

Interplay between terminal and bridging diiron hydrides in neutral and oxidized states

230. X. Yu, C.-H Tung, W. Wang, M. T. Huynh, D. L. Gray, S. Hammes-Schiffer, and T. B. Rauchfuss, “Interplay between terminal and bridging diiron hydrides in neutral and oxidized states,” Organometallics 36, 2245-2253 (2017).

Concerted one-electron two-proton transfer processes in models inspired by the Tyr-His couple of photosystem II

229. M.T. Huynh, S. J. Mora, M. Villalba, M.E. Tejeda-Ferrari, P. A. Liddell, B. R. Cherry, A.-L. Teillout, C. W. Machan, C. P. Kubiak, D. Gust, T. A. Moore, S. Hammes-Schiffer, and A. L. Moore, “Concerted one-electron two-proton transfer processes in models inspired by the Tyr-His couple of photosystem II,” ACS Cent. Sci. 3, 372-380 (2017).

Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models

226. S. Hu, A. V. Soudackov, S. Hammes-Schiffer, and J. P. Klinman, “Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models,” ACS Catal. 7, 3569-3574 (2017).

Tuning the ultrafast dynamics of photoinduced proton-coupled electron transfer in energy conversion processes

218. P. Goyal and S. Hammes-Schiffer, “Tuning the ultrafast dynamics of photoinduced proton-coupled electron transfer in energy conversion processes,” ACS Energy Lett. 2, 512-519 (2017).

Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase

216. A. V. Soudackov and S. Hammes-Schiffer, “Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase,” Farady Discuss. 195, 171-189 (2016).