hydrogen evolution

Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides

211. O. A. Ulloa, M. T. Huynh, C. P. Richers, J. A. Bertke, M. J. Nilges, S. Hammes-Schiffer, and T. B. Rauchfuss, “Mechanism of H2 production by models for the [NiFe]-hydrogenases: Role of reduced hydrides,” J. Am. Chem. Soc. 138, 9234–9245 (2016).

Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides

209. D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, and T. B. Rauchfuss, “Hydrogenase enzymes and their synthetic models: The role of metal hydrides,” Chem. Rev. 116, 8693–8749 (2016).

Computational study of fluorinated diglyoxime-iron complexes: Tuning the electrocatalytic pathways for hydrogen evolution

207. A. K. Harshan, B. H. Solis, J. R. Winkler, H. B. Gray, and S. Hammes-Schiffer, “Computational study of fluorinated diglyoxime-iron complexes: Tuning the electrocatalytic pathways for hydrogen evolution,” Inorg. Chem. 55, 2934–2940 (2016).

Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen

203. S. Raugei, M. L. Helm, S. Hammes-Schiffer, A. M. Appel, M. O’Hagan, E. S. Wiedner, and R. M. Bullock “Experimental and computational mechanistic studies guiding the rational design of molecular electrocatalysts for production and oxidation of hydrogen,” Inorg. Chem. 55, 445-460 (2016).

Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism

202. B. H. Solis, A. G. Maher, D. K. Dogutan, D. G. Nocera, and S. Hammes-Schiffer, “Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism,” Proc. Nat. Acad. Sci. USA 113, 485-492 (2016).

Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site

201. G. M. Chambers, M. T. Huynh, Y. Li, S. Hammes-Schiffer, T. B. Rauchfuss, E. Reijerse, and W. Lubitz, “Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site,” Inorg. Chem. 55, 419-431 (2016).

Theoretical analysis of cobalt hangman prophyrins: Ligand dearomatization and mechanistic implications for hydrogen evolution

186. B. H. Solis, A. G. Maher, T. Honda, D. C. Powers, D. G. Nocera, and S. Hammes-Schiffer, “Theoretical analysis of cobalt hangman prophyrins: Ligand dearomatization and mechanistic implications for hydrogen evolution,” ACS Catal. 4, 4516–4526 (2014).

Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

183. D. K. Bediako, B. H. Solis, D. K. Dogutan, M. M. Roubelakis, A. G. Maher, C. H. Lee, M. B. Chambers, S. Hammes-Schiffer, and D. G. Nocera, “Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins,” Proc. Natl. Acad. Sci. USA 111, 15001-15006 (2014).

Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights

181. M. T. Huynh, W. Wang, T. B. Rauchfuss, and S. Hammes-Schiffer, “Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights,” Inorg. Chem. 53, 10301-10311 (2014).

Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel.

180. M. T. Huynh, D. Schilter, S. Hammes-Schiffer, and T. B. Rauchfuss, “Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel,” J. Am. Chem. Soc. 136, 12385-12395 (2014).