Mike Pak

Mike Pak


Nuclear Electronic Orbital (NEO) Method

mvp11@illinois.edu

(217) 300-1480

Ph.D. in Chemistry, 2002
Iowa State University, Ames, IA

Ph.D. in Physics, 1996
St. Petersburg State University, St. Petersburg, Russia

M.S. in Physics
St. Petersburg State University, St. Petersburg, Russia

Publications

Multicomponent density functional theory embedding formulation

212. T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, “Multicomponent density functional theory embedding formulation,” J. Chem. Phys. 145, 044106 (2016).

Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

193. K. R. Brorsen, A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, “Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems,” J. Chem. Phys. 142, 214108 (2015).

Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach

192. A. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, “Quantum treatment or protons with the reduced explicitly correlated Hartree Fock approach,” J. Chem. Phys. 142, 214107 (2015).

Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Applications to positronic molecular systems

168. A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, “Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Applications to positronic molecular systems,” J. Chem. Phys. 139, 034103 (2013).

Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Theoretical formulation

167. A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, “Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Theoretical formulation,” J. Chem. Phys.139, 034102 (2013).

Multicomponent density functional theory study of the interplay between electron-electron and electron-proton correlation

155. A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, “Multicomponent density functional theory study of the interplay between electron-electron and electron-proton correlation,” J. Chem. Phys. 136, 174114 (2012).

Analysis of electron-positron wavefunctions in the nuclear-electronic orbital framework

154. C. Swalina, M. V. Pak, and S. Hammes-Schiffer, “Analysis of electron-positron wavefunctions in the nuclear-electronic orbital framework,” J. Chem. Phys. 136, 164105 (2012).

Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes

146. B. H. Solis and S. Hammes-Schiffer, “Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes,” Inorg. Chem. 50, 11252-11262 (2011).

Alternative wavefunction ansatz for including explicit electron-proton correlation in the nuclear-electronic orbital approach

142. C. Ko, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, “Alternative wavefunction ansatz for including explicit electron-proton correlation in the nuclear-electronic orbital approach,” J. Chem. Phys. 135, 054106 (2011).

Nuclear-electronic orbital method within the fragment molecular orbital approach

123. B. Auer, M.V. Pak, and S. Hammes-Schiffer, “Nuclear-electronic orbital method within the fragment molecular orbital approach,” J. Phys. Chem. C 114, 5582-5588 (2010).