Kurt Brorsen

Kurt Brorsen


Nuclear Electronic Orbital (NEO) Method

kbrorsen@illinois.edu

(217) 300-1480

Ph.D in Physical Chemistry, 2014
Iowa State University, Ames, IA

B.S. in Chemistry and Mathematics, 2008
University of Oklahoma, Norman, OK

Publications

Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated?

227. K. R. Brorsen, Y. Yang, M. V. Pak, and S. Hammes-Schiffer, “Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated?” J. Phys. Chem. Lett. 8, 2076-2081 (2017).

Calculation of positron binding energies and electron-positron annihilation rates for atomic systems with the reduced explicitly correlated Hartree-Fock method within the nuclear-electronic orbitals framework

220. K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, “Calculation of positron binding energies and electron-positron annihilation rates for atomic systems with the reduced explicitly correlated Hartree-Fock method within the nuclear-electronic orbitals framework,” J. Phys. Chem. A 121, 515-522 (2017).

Multicomponent density functional theory embedding formulation

212. T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, “Multicomponent density functional theory embedding formulation,” J. Chem. Phys. 145, 044106 (2016).