Frequency and time domain nuclear-electronic orbital equation-of-motion coupled cluster methods: Combination bands and electronic-protonic double excitations

282. F. Pavošević, Z. Tao, T. Culpitt, L. Zhao, X. Li, and S. Hammes-Schiffer, “Frequency and time domain nuclear-electronic orbital equation-of-motion coupled cluster methods: Combination bands and electronic-protonic double excitations,” J. Phys. Chem. Lett. 11, 6435-6442 (2020).

Multicomponent quantum chemistry: Integrating electronic and nuclear quantum effects via the nuclear-electronic orbital method

273. F.Pavošević, T. Culpitt, and S. Hammes-Schiffer, “Multicomponent quantum chemistry: Integrating electronic and nuclear quantum effects via the nuclear-electronic orbital method,” Chem. Rev. 120, 4222-4253 (2020).

Molecular vibrational frequencies with multiple quantum protons within the nuclear-electronic orbital framework

266. T. Culpitt, Y. Yang, P. E. Schneider, F. Pavošević, and S. Hammes-Schiffer, “Molecular vibrational frequencies with multiple quantum protons within the nuclear-electronic orbital framework,” J. Chem. Theory Comput. 15, 6840-6849 (2019).

Enhancing the applicability of multicomponent time-dependent density functional theory

255. T. Culpitt, Y. Yang, F. Pavošević, Z. Tao, and S. Hammes-Schiffer, “Enhancing the applicability of multicomponent time-dependent density functional theory,” J. Chem. Phys. 150, 201101 (2019).

Molecular vibrational frequencies within the nuclear-electronic orbital framework

250. Y. Yang, P. E. Schneider, T. Culpitt, F. Pavošević, and S. Hammes-Schiffer, “Molecular vibrational frequencies within the nuclear-electronic orbital framework,” J. Phys. Chem. Lett. 10, 1167-1172 (2019).

Multicomponent coupled cluster singles and doubles theory within the nuclear-electronic orbital framework

246. F. Pavošević, T. Culpitt, and S. Hammes-Schiffer, “Multicomponent coupled cluster singles and doubles theory within the nuclear-electronic orbital framework,” J. Chem. Theory Comput. 15, 338-347 (2019).

Stability conditions and local minima in multicomponent Hartree-Fock and density functional theory

239. Y. Yang, T. Culpitt, Z. Tao and S. Hammes-Schiffer, “Stability conditions and local minima in multicomponent Hartree-Fock and density functional theory,” J. Chem. Phys. 149, 084105 (2018).

Multicomponent time-dependent density functional theory: Proton and electron excitation energies

236. Y. Yang, T. Culpitt, and S. Hammes-Schiffer, “Multicomponent time-dependent density functional theory: Proton and electron excitation energies,” J. Phys. Chem. Lett. 9, 1765-1770 (2018).

Development of a practical multicomponent density functional for electron-proton correlation to produce accurate proton densities

231. Y. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, “Development of a practical multicomponent density functional for electron-proton correlation to produce accurate proton densities,” J. Chem. Phys. 147, 114113 (2017).

Density functional theory embedding with the orthogonality constrained basis set expansion procedure

228. T. Culpitt, K. R. Brorsen, and S. Hammes-Schiffer, “Density functional theory embedding with the orthogonality constrained basis set expansion procedure,” J. Chem. Phys. 146, 211101 (2017).