Electrochemical Electron Transfer and Proton-Coupled Electron Transfer: Effects of Double Layer and Ionic Environment on Solvent Reorganization Energies

208. S. Ghosh, A. V. Soudackov, and S. Hammes-Schiffer, “Electrochemical electron transfer and proton-coupled electron transfer: Effects of double layer and ionic environment on solvent reorganization energies,” J. Chem. Theory Comput. 12, 2917-2925 (2016).

Co(salophen)-catalyzed aerobic oxidation of para-hydroquinone: Mechanism and implications for aerobic oxidation catalysis

196. C. W. Anson, S. Ghosh, S. Hammes-Schiffer, and S. Stahl, “Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone: Mechanism and implications for aerobic oxidation catalysis,” J. Am. Chem. Soc. 138, 4186–4193 (2016).

Calculation of electrochemical reorganization energies for redox molecules at self-assembled monolayer modified electrodes

187. S. Ghosh and S. Hammes-Schiffer, “Calculation of electrochemical reorganization energies for redox molecules at self-assembled monolayer modified electrodes,” J. Phys. Chem. Lett. 6, 1-5 (2015).

Electrochemical solvent reorganization energies in the framework of the polarizable continuum model

176. S. Ghosh, S. Horvath, A. V. Soudackov, and S. Hammes-Schiffer, “Electrochemical solvent reorganization energies in the framework of the polarizable continuum model,” J. Chem. Theory Comput. 10, 2091-2102 (2014).

Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase

172. S. Chakraborty, J. Reed, M. Ross, M. J. Nilges, I. D. Petrik, S. Ghosh, S. Hammes-Schiffer, J. T. Sage, Y. Zhang, C. E. Schulz, and Y. Lu, “Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase,” Angew. Chem. Int. Ed. 53, 2417-2421 (2014).