Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides

211. O. A. Ulloa, M. T. Huynh, C. P. Richers, J. A. Bertke, M. J. Nilges, S. Hammes-Schiffer, and T. B. Rauchfuss, “Mechanism of H2 production by models for the [NiFe]-hydrogenases: Role of reduced hydrides,” J. Am. Chem. Soc. 138, 9234–9245 (2016).

Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides

209. D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, and T. B. Rauchfuss, “Hydrogenase enzymes and their synthetic models: The role of metal hydrides,” Chem. Rev. 116, 8693–8749 (2016).

Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site

201. G. M. Chambers, M. T. Huynh, Y. Li, S. Hammes-Schiffer, T. B. Rauchfuss, E. Reijerse, and W. Lubitz, “Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site,” Inorg. Chem. 55, 419-431 (2016).

Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights

181. M. T. Huynh, W. Wang, T. B. Rauchfuss, and S. Hammes-Schiffer, “Computational investigation of [FeFe]-hydrogenase models: Characterization of singly and doubly protonated intermediates and mechanistic insights,” Inorg. Chem. 53, 10301-10311 (2014).

Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel.

180. M. T. Huynh, D. Schilter, S. Hammes-Schiffer, and T. B. Rauchfuss, “Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel,” J. Am. Chem. Soc. 136, 12385-12395 (2014).