Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase

182. A. V. Soudackov and S. Hammes-Schiffer, “Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase,” J. Phys. Chem. Lett. 5, 3274-3278 (2014).

Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation

178. S. Hu, S. C. Sharma, A. D. Scouras, A. V. Soudackov, C. A. Marcus Carr, S. Hammes-Schiffer, T. Alber, and J.P. Klinman, “Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation,” J. Am. Chem. Soc. 136, 8157-8160 (2014).

Electrochemical solvent reorganization energies in the framework of the polarizable continuum model

176. S. Ghosh, S. Horvath, A. V. Soudackov, and S. Hammes-Schiffer, “Electrochemical solvent reorganization energies in the framework of the polarizable continuum model,” J. Chem. Theory Comput. 10, 2091-2102 (2014).

Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

174. C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales,” J. Chem. Phys. 140, 034113 (2014).

Photoinduced proton-coupled electron transfer of hydrogen-bonded p-nitrophenyl-phenol-methylamine complex in solution

160. C. Ko, B. H. Solis, A. V. Soudackov, and S. Hammes-Schiffer, “Photoinduced proton-coupled electron transfer of hydrogen-bonded p-nitrophenyl-phenol-methylamine complex in solution,” J. Phys. Chem. B117, 316-325 (2013).

Nonadiabatic dynamics of photoinduced proton-coupled electron transfer: Comparison of explicit and implicit solvent simulations

156. B. Auer, A. V. Soudackov, and S. Hammes-Schiffer, “Nonadiabatic dynamics of photoinduced proton-coupled electron transfer: Comparison of explicit and implicit solvent simulations,” J. Phys. Chem. B 116, 7695-7708 (2012).

Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

153. S. Horvath, L. E. Fernandez, A. V. Soudackov, and S. Hammes-Schiffer, “Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production,” Proc. Natl. Acad. Sci. USA109, 15663-15668 (2012).

Multidimensional treatment of stochastic solvent dynamics in photoinduced proton-coupled electron transfer processes: Sequential, concerted, and complex branching mechanisms

147. A. V. Soudackov, A. Hazra, and S. Hammes-Schiffer, “Multidimensional treatment of stochastic solvent dynamics in photoinduced proton-coupled electron transfer processes: Sequential, concerted, and complex branching mechanisms,” J. Chem. Phys. 135, 144115 (2011).

Isotope effects on the nonequilibrium dynamics of ultrafast photoinduced proton-coupled electron transfer reactions in solution

135. A. Hazra, A. V. Soudackov, and S. Hammes-Schiffer, “Isotope effects on the nonequilibrium dynamics of ultrafast photoinduced proton-coupled electron transfer reactions in solution,” J. Phys. Chem. Lett. 2, 36-40 (2011).

Role of solvent dynamics in ultrafast photoinduced proton-coupled electron transfer reactions in solution

130. A. Hazra, A. V. Soudackov, and S. Hammes-Schiffer, “Role of solvent dynamics in ultrafast photoinduced proton-coupled electron transfer reactions in solution,” J. Phys. Chem. B 114, 12319-12332 (2010).