Multi PCET in symmetrically substituted benzimidazoles

312. E. Odella, M. Secor, M. Elliot, T. L. Groy, T. A. Moore, S. Hammes-Schiffer, and A. L. Moore, “Multi PCET in symmetrically substituted benzimidazoles,” Chem. Sci. 12, 12667-12675 (2021). DOI: 10.1039/D1SC03782J

Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential

311. P. Hutchison, R. E. Warburton, A. V. Soudackov, and S. Hammes-Schiffer, “Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential,” J. Phys. Chem. C 125, 21891-21901 (2021). DOI: 10.1021/acs.jpcc.1c04464

Proton-coupled defects impact O—H bond dissociation free energies on metal oxide surfaces

310. R. E. Warburton, J. M. Mayer, and S. Hammes-Schiffer, “Proton-coupled defects impact O—H bond dissociation free energies on metal oxide surfaces,” J. Phys. Chem. Lett. 12, 9761-9767 (2021). DOI: 10.1021/acs.jpclett.1c02837

Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

309. Epifanovsky et al. (Q-Chem collaboration), “Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package,” J. Chem. Phys. 155, 084801 (2021). DOI: 10.1063/5.0055522

Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies

308. Z. Tao,  S. Roy, P. E. Schneider, F. Pavošević, and S. Hammes-Schiffer, “Analytical gradients for nuclear-electronic orbital time-dependent density functional theory: Excited state geometry optimizations and adiabatic excitation energies,” J. Chem. Theory Comp.17, 5110-5122 (2021) . DOI: 10.1021/acs.jctc.1c00454

Hydrogen evolution mediated by cobalt diimine-dioxime complexes: Insights into the role of the ligand acid/base functionalities

307. D. Sun, A. K. Harshan, J. Pécaut, S. Hammes-Schiffer, C. Costentin, and V. Artero, “Hydrogen evolution mediated by cobalt diimine-dioxime complexes: Insights into the role of the ligand acid/base functionalities,” ChemElectroChem 8, 2671-2679 (2021).

Nuclear-electronic orbital methods: Foundations and prospects

306. S. Hammes-Schiffer, “Nuclear-electronic orbital methods: Foundations and prospects,” J. Chem. Phys. 143, 8381-8390 (2021).

Electrocatalytic oxidation of alcohol with cobalt triphosphine complexes

304. S. P. Heins, P. E. Schneider, A. L Speelman, S. Hammes-Schiffer, and A. M. Appel, “Electrocatalytic oxidation of alcohol with cobalt triphosphine complexes,” ACS Catalyl. 11, 6384-6389 (2021).

Mechanistic insights about electrochemical proton-coupled electron transfer derived from a vibrational probe

305. S. Sarkar, A. Maitra, W. R. Lake, R. E. Warburton, S. Hammes-Schiffer, and J. M. Dawlaty, “Mechanistic insights about electrochemical proton-coupled electron transfer derived from a vibrational probe,” J. Am. Chem. Soc. 143, 8381-8390 (2021).

Integration of theory and experiment in the modelling of heterogeneous electrocatalysis

303. S. Hammes-Schiffer and G. Galli, “Integration of theory and experiment in the modelling of heterogeneous electrocatalysis,” Nat.Energy 6, 700-705 (2021).