Computational study of fluorinated diglyoxime-iron complexes: Tuning the electrocatalytic pathways for hydrogen evolution

207. A. K. Harshan, B. H. Solis, J. R. Winkler, H. B. Gray, and S. Hammes-Schiffer, “Computational study of fluorinated diglyoxime-iron complexes: Tuning the electrocatalytic pathways for hydrogen evolution,” Inorg. Chem. 55, 2934–2940 (2016).

Co(salophen)-catalyzed aerobic oxidation of para-hydroquinone: Mechanism and implications for aerobic oxidation catalysis

196. C. W. Anson, S. Ghosh, S. Hammes-Schiffer, and S. Stahl, “Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone: Mechanism and implications for aerobic oxidation catalysis,” J. Am. Chem. Soc. 138, 4186–4193 (2016).

Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex

205. P. Goyal, C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex,” J. Phys. Chem. B 120, 2407-2417 (2016).

Effect of Protonation upon Electronic Coupling in the Mixed Valence and Mixed Protonated Complex, [Ni(2,3-pyrazinedithiol)2]

204. S. Kennedy, P. Goyal, M. Kozar, H. Yennawar, S. Hammes-Schiffer, and B. Lear “Effect of protonation upon electron coupling in the mixed valence and mixed protonated complex, [Ni(2,3-pyrazinedithiol)2],” Inorg. Chem. 55, 1433-1445 (2016).

Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen

203. S. Raugei, M. L. Helm, S. Hammes-Schiffer, A. M. Appel, M. O’Hagan, E. S. Wiedner, and R. M. Bullock “Experimental and computational mechanistic studies guiding the rational design of molecular electrocatalysts for production and oxidation of hydrogen,” Inorg. Chem. 55, 445-460 (2016).

Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism

202. B. H. Solis, A. G. Maher, D. K. Dogutan, D. G. Nocera, and S. Hammes-Schiffer, “Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism,” Proc. Nat. Acad. Sci. USA 113, 485-492 (2016).

Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site

201. G. M. Chambers, M. T. Huynh, Y. Li, S. Hammes-Schiffer, T. B. Rauchfuss, E. Reijerse, and W. Lubitz, “Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site,” Inorg. Chem. 55, 419-431 (2016).

Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

200. A. V. Soudackov and S. Hammes-Schiffer, “Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion,” J. Chem. Phys. 143, 194101 (2015).

Comparative molecular dynamics studies of human DNA polymerase η

199. M. N. Ucisik and S. Hammes-Schiffer, “Comparative molecular dynamics studies of human DNA polymerase η,” J. Chem. Inf. Model. 55, 2672-2681 (2015).

Relative binding free energies for adenine and guanine to damaged and undamaged DNA in human DNA polymerase η: Clues for fidelity and overall efficiency

198. M. N. Ucisik and S. Hammes-Schiffer, “Relative binding free energies for adenine and guanine to damaged and undamaged DNA in human DNA polymerase η: Clues for fidelity and overall efficiency,” J. Am. Chem. Soc. 137, 13240-13243 (2015).