Molecular Dynamics Study of Twister Ribozyme: Role of Mg2+ Ions and the Hydrogen-Bonding Network in the Active Site

210. M. N. Ucisik, P. C. Bevilacqua, and S. Hammes-Schiffer, “Molecular dynamics study of twister ribozyme: Role of Mg2+ ions and the hydrogen-bonding network in the active site,” Biochemistry. 55, 3834-3846 (2016).

Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides

209. D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, and T. B. Rauchfuss, “Hydrogenase enzymes and their synthetic models: The role of metal hydrides,” Chem. Rev. 116, 8693–8749 (2016).

Electrochemical Electron Transfer and Proton-Coupled Electron Transfer: Effects of Double Layer and Ionic Environment on Solvent Reorganization Energies

208. S. Ghosh, A. V. Soudackov, and S. Hammes-Schiffer, “Electrochemical electron transfer and proton-coupled electron transfer: Effects of double layer and ionic environment on solvent reorganization energies,” J. Chem. Theory Comput. 12, 2917-2925 (2016).

Computational study of fluorinated diglyoxime-iron complexes: Tuning the electrocatalytic pathways for hydrogen evolution

207. A. K. Harshan, B. H. Solis, J. R. Winkler, H. B. Gray, and S. Hammes-Schiffer, “Computational study of fluorinated diglyoxime-iron complexes: Tuning the electrocatalytic pathways for hydrogen evolution,” Inorg. Chem. 55, 2934–2940 (2016).

Co(salophen)-catalyzed aerobic oxidation of para-hydroquinone: Mechanism and implications for aerobic oxidation catalysis

196. C. W. Anson, S. Ghosh, S. Hammes-Schiffer, and S. Stahl, “Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone: Mechanism and implications for aerobic oxidation catalysis,” J. Am. Chem. Soc. 138, 4186–4193 (2016).

Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex

205. P. Goyal, C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex,” J. Phys. Chem. B 120, 2407-2417 (2016).

Effect of Protonation upon Electronic Coupling in the Mixed Valence and Mixed Protonated Complex, [Ni(2,3-pyrazinedithiol)2]

204. S. Kennedy, P. Goyal, M. Kozar, H. Yennawar, S. Hammes-Schiffer, and B. Lear “Effect of protonation upon electron coupling in the mixed valence and mixed protonated complex, [Ni(2,3-pyrazinedithiol)2],” Inorg. Chem. 55, 1433-1445 (2016).

Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen

203. S. Raugei, M. L. Helm, S. Hammes-Schiffer, A. M. Appel, M. O’Hagan, E. S. Wiedner, and R. M. Bullock “Experimental and computational mechanistic studies guiding the rational design of molecular electrocatalysts for production and oxidation of hydrogen,” Inorg. Chem. 55, 445-460 (2016).

Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism

202. B. H. Solis, A. G. Maher, D. K. Dogutan, D. G. Nocera, and S. Hammes-Schiffer, “Active nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism,” Proc. Nat. Acad. Sci. USA 113, 485-492 (2016).

Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site

201. G. M. Chambers, M. T. Huynh, Y. Li, S. Hammes-Schiffer, T. B. Rauchfuss, E. Reijerse, and W. Lubitz, “Models of the Ni-L and Ni-SIa states of the [NiFe]-hydrogenase active site,” Inorg. Chem. 55, 419-431 (2016).