Solvated nuclear-electronic orbital structure and dynamics

320. A. Wildman, Z. Tao, L. Zhao, S. Hammes-Schiffer, and X. Li, “Solvated nuclear-electronic orbital structure and dynamics,” J. Chem. Theory Comp. 18, 1340-1346 (2022). DOI: 10.1021/acs.jctc.1c01285

Analytical gradients for nuclear-electronic orbital multistate density functional theory: Geometry optimizations and reaction paths

319. Q. Yu, P. E. Schneider, and S. Hammes-Schiffer, “Analytical gradients for nuclear-electronic orbital multistate density functional theory: Geometry optimizations and reaction paths,” J. Chem. Phys. 156, 114115 (2022). DOI: 10.1063/5.0085344

Structural and thermodynamic effects on the kinetics of C–H oxidation by multisite proton-coupled electron transfer in fluorenyl benzoates

318. B. Koronkiewicz, E. R. Sayfutyarova, S. C. Coste, B. Q. Mercado, S. Hammes-Schiffer, and J. M. Mayer, “Structural and thermodynamic effects on the kinetics of C–H oxidation by multisite proton-coupled electron transfer in fluorenyl benzoates,” J. Org. Chem. 87, 2997-3006 (2022). DOI: 10.1021/acs.joc.1c02834

Theoretical perspectives on non-Born-Oppenheimer effects in chemistry

319. S. Hammes-Schiffer, “Theoretical perspectives on non-Born-Oppenheimer effects in chemistry,” Phil. Trans. A (in press).

Electrocatalysis in alkaline media and alkaline membrane-based energy technologies

318. Y. Yang et al. (CABES collaboration), “Electrocatalysis in alkaline media and alkaline membrane-based energy technologies,” Chem. Rev. (in press).

Understanding hydrogen atom and hydride transfer processes during electrochemical alcohol and aldehyde oxidation

317. M. T. Bender, R. Warburton, S. Hammes-Schiffer, and K.-S. Choi, “Understanding hydrogen atom and hydride transfer processes during electrochemical alcohol and aldehyde oxidation,” ACS Catal. 11, 15110-15124 (2021).DOI: 10.1021/acscatal.1c04163

Direct dynamics with nuclear-electronic orbital density functional theory

316. Z. Tao, Q. Yu, S. Roy, and S. Hammes-Schiffer, “Direct dynamics with nuclear-electronic orbital density functional theory,” Acc. Chem. Res. 54, 4131-4141 (2021). DOI: 10.1021/acs.accounts.1c00516

Simulation of the chiral sum frequency generation response of supramolecular structures requires vibrational couplings

315. D. Konstantinovsky, E. A. Perets, E. C. Y. Yan, and S. Hammes-Schiffer, “Simulation of the chiral sum frequency generation response of supramolecular structures requires vibrational couplings,” J. Phys. Chem. B 125, 12072-12081 (2021). DOI: 10.1021/acs.jpcb.1c06360

Investigation of the pKa of the nucleophilic O2′ of the hairpin ribozyme

314.  A. J. Veenis, P. Li, A. V. Soudackov, S. Hammes-Schiffer, and P. C. Bevilacqua, “Investigation of the pKa of the nucleophilic O2′ of the hairpin ribozyme,” J. Phys. Chem. B 125, 11869-11883 (2021). DOI: 10.1021/acs.jpcb.1c06546

Artificial neural networks as propagators in quantum dynamics

313. M. Secor, A. V. Soudackov, and S. Hammes-Schiffer, “Artificial neural networks as propagators in quantum dynamics,” J. Phys. Chem. Lett. 12, 10654-10662 (2021). DOI: 10.1021/acs.jpclett.1c03117