Alexander Soudackov

Alexander Soudackov


Proton-Coupled Electron Transfer; Molecular Dynamics

asouda@illinois.edu

(217) 300-1480

Ph.D in Physics and Mathematics, 1992
Karpov Institute of Physical Chemistry, Moscow, Russia

M.S. in Chemistry, 1986
Moscow State University, Moscow, Russia

Publications

Role of proton diffusion in the kinetics of proton-coupled electron transfer from photoreduced ZnO nanocrystals

234. S. Ghosh, A. V. Soudackov, and S. Hammes-Schiffer, “Role of proton diffusion in the kinetics of proton-coupled electron transfer from photoreduced ZnO nanocrystals,” ACS Nano. (in press).

Theoretical insights into proton-coupled electron transfer from a photoreduced ZnO nanocrystal to an organic radical

233. S. Ghosh, J. Castillo-Lora, A. V. Soudackov, J. M. Mayer, and S. Hammes-Schiffer, “Theoretical insights into proton-coupled electron transfer from a photoreduced ZnO nanocrystal to an organic radical,” Nano. Lett. 17, 5762-5767 (2017).

Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models

226. S. Hu, A. V. Soudackov, S. Hammes-Schiffer, and J. P. Klinman, “Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models,” ACS Catal. 7, 3569-3574 (2017).

Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase

216. A. V. Soudackov and S. Hammes-Schiffer, “Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase,” Farady Discuss. 195, 171-189 (2016).

Computational insights into five- versus six-coordinate iron center in ferrous soybean lipoxygenase

214. T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, “Computational insights into five- versus six-coordinate iron center in ferrous soybean lipoxygenase,” J. Phys. Chem. Lett. 7, 3429-3433 (2016).

Electrochemical Electron Transfer and Proton-Coupled Electron Transfer: Effects of Double Layer and Ionic Environment on Solvent Reorganization Energies

208. S. Ghosh, A. V. Soudackov, and S. Hammes-Schiffer, “Electrochemical electron transfer and proton-coupled electron transfer: Effects of double layer and ionic environment on solvent reorganization energies,” J. Chem. Theory Comput. 12, 2917-2925 (2016).

Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex

205. P. Goyal, C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex,” J. Phys. Chem. B 120, 2407-2417 (2016).

Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

200. A. V. Soudackov and S. Hammes-Schiffer, “Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion,” J. Chem. Phys. 143, 194101 (2015).

Dependence of vibronic coupling on molecular geometry and environment: Bridging hydrogen atom transfer and electron-proton transfer

197. A. K. Harshan, T. Yu, A. V. Soudackov, and S. Hammes-Schiffer, “Dependence of vibronic coupling on molecular geometry and environment: Bridging hydrogen atom transfer and electron-proton transfer,” J. Am. Chem. Soc. 137, 13545-13555 (2015).

Nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex

189. P. Goyal, C. A. Schwerdtfeger, A. V. Soudackov, and S. Hammes-Schiffer, “Nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex,” J. Phys. Chem. B 119, 2758-2768 (2015).